OBSERVATIONS REGARDING MULTIPLICATION ON VEGETATIVE WAY OF *JUNIPERUS HORIZONTALIS* MNCH. SPECIES IN IAȘI COUNTY CONDITIONS

OBSERVAȚII PRIVIND ÎNMULȚIREA PE CALE VEGETATIVĂ A SPECIEI JUNIPERUS HORIZONTALIS MNCH. ÎN CONDIȚIILE JUDEȚULUI IAȘI

BERNARDIS R. ¹, DASCĂLU M^{1*}., PAŞCU Roxana¹, ZLATI Cristina¹, COJOCARIU Mirela¹ POŞTA Daniela²

*Corresponding author e-mail: mdascalu2000@yahoo/com

Abstract. Within the multitude of dendrological species, Juniperus species are particular importance in green areas and especially in our country's conditions that are generally favorable and very favorable to these species. The aim of the paper is to highlight the potential for vegetative propagation of the most popular species, namely Juniperus horizontalis Mnch., which is found in Iasi county.

During the vegetation period, observations were made on the action of rooting biostimulators and the growth rate of cuttings roots by determining the percentage of rooted cuttings, the average length of roots emitted per cuttings and the average number of roots per cut.

Key words: seedlings, substrate, rooting biostimulators.

Rezumat. În cadrul multitudinii de specii dendrologice, speciile genului Juniperus o importanță deosebită în amenajarea spațiilor verzi și mai ales în condițiile de la noi din țară care sunt în general favorabile și foarte favorabile pentru aceste specii. Scopul lucrării este de a pune în evidență potențialul de înmulțire pe cale vegetativă a celei mai cunoscute specii, respectiv Juniperus horizontalis Mnch., care se întâlneste în județul Iasi.

Pe parcursul perioadei de vegetație s-au efectuat observații privind acțiunea biostimulatorilor de înrădăcinare și sporul de creștere al rădăcinilor butașilor prin determinări privind procentul de butași înrădăcinați, lungimea medie a rădăcinilor emise pe butași și numărul mediu de rădăcini pe butaș.

Cuvinte cheie: butași, substrat, biostimulatori de înrădăcinare

INTRODUCTION

One of the basic components of the green spaces that ensures the aesthetic appearance of the localities is the landscaping.

_

¹"Ion Ionescu de la Brad" University of Life Sciences, Iasi, Romania

²University of Agricultural Sciences and Veterinary Medicine of Banat Timişoara, Romania

Within the multitude of dendrological species of ornamental shrubs, Juniperus species are of particular importance in green areas, and the conditions in our country that are generally favorable and very favorable to this species.

The necessity of diversifying the assortment is a priority given the diversity of biological material and especially the achievements achieved worldwide. This work is complemented by specialists in the field as an efficient and well documented material because it follows the percentage of rooting in *Juniperus horizontalis* Mnch. under unprotected conditions (Bernardis, 2010, lliescu Ana Felicia, 2002).

MATERIAL AND METHOD

The production of the rooted cuttings of *Juniperus horizontalis* Mnch. took place in the Tudor Neculai nursery in Iaşi in 2021. The knock-off period and the arrangement on rooting substrates was carried out in April. The time interval was two months (april, may).

The biological material used consists of semi-milled cuttings from spiked peaks, with an average length of 6-8 cm that have been degraded in the basal part on a segment of 4 centimeters. The cuttings were harvested from healthy plants from the Tudor Neculai nursery collection in lasi. The harvesting, preparation and placement of the cuttings on the rooting substrate took place on the same day.

The experience is of type 3x2, in two repetitions:

- -Factor A the type of rooting substrate with three graduations: a1- Prut sand; a2 Prut sand + forest vegetation (1: 1); a3-pearlite granules + sand (1: 1);
- Factor B treatment with rhizogenic bio-stimulators (Radi-Stim No 2): b1-treated; b2-untreated.

By combining factor A with factor B and graduations, 6 experimental variants resulted (tab. 1). These variants were based on the subdivided plot method.

The substrates prepared for the experiments were placed on a layer 15 cm thick uniformly. Twenty cuttings were prepared and seated for each intentional experimental variation.

Table 1

Experimental variants of rooted cuttings *Juniperus horizontalis* Mnch.

Var. no.	Var. symbol	Type of substrate/type of cuttings			
V ₁	a ₁ b ₁	Prut sand, untreated cuttings			
V ₂	a ₁ b ₂	Prut sand, treated cuttings			
V ₃	a ₂ b ₁	Pearlite granules + sand (1:1), untreated cuttings			
V ₄	a ₂ b ₂	Pearlite granules + sand (1:1), treated cuttings			
V_5	a₃ b₁	Black earth + sand (1:1), untreated cuttings			
V ₆	a ₃ b ₂	Black earth + sand (1:1), treated cuttings			

Measurements and determinations have been made regarding the percentage of rooted cuttings (the number of rooted cuttings from the total of those planted on variants); the average length of roots emitted per cuttings and the average number of roots per cut.

To determine the average root length of the cuttings, measurements were made for each individual root and their amount was reported as the number of roots.

With these measurements, the parameters related to the evolution of the growth of the root system of the cuttings, the importance of the rooting biostimulators on the rooting efficiency and the growth rate of the roots of the cuttings were calculated.

RESULTS AND DISCUTIONS

In Romania, *Juniperus horizontalis* Mnch. are found in most nurseries, having an ornamental, therapeutic and environmental value (Mihail, 2005). An extremely valuable method for production is the multiplication of the species by vegetative way through cuttings. The results obtained at the end of the rooting period of cuttings of *Juniperus horizontalis* Mnch., untreated and treated with rhizogenic bio-stimulator, on various rooting substrates were reported in table 2 and table 3 and the primary data were statistically transformed and interpreted. Risogenesis is the phenomenon of organogenesis with a major implication in vegetative multiplication, because in its study a complex of factors that interact must be considered

Experimental results on the rooting of untreated cuttings by *Juniperus horizontalis* Mnch. under the influence of substrate composition

Table 2

Table 3

Substrate type	Rooted cuttings (%) b ₁ — untreated		
Substrate type			
a ₁ —prut sand	37		
a ₂ — perlit granules + sand (1:1)	50		
a ₃ —black earth + sand (1:1)	92		

Table 2 shows large differences in the rooting percentage of untreated cuttings on the three rooting layers. We observe that the highest rooting percentage is obtained with the mixture of black earth + sand (1: 1), 92%, and the percentage difference between it and the Prut sand is 55%. 2 variants of the total of the 3 experimental variants ensured a rooting of over 50%.

Experimental results on the rooting of treated cuttings by *Juniperus horizontalis* Mnch. under the influence of substrate composition

Substrate type	Rooted cuttings (%)		
a ₁ —Prut sand	78		
a ₂ perlit granules + sand (1:1)	33		
a ₃ — black earth + sand (1:1)	100		

According to table 3, we notice large differences in the rooting percentage of the cuttings at the level of the three rooting layers due to the risogenic Stimulator treatment Radi-Stim no. 2. We find that the highest rooting percentage was achieved in the case of the black earth + sand (1: 1) mixture, 100%. Two variants of the three experimental variants ensured a 78% -100% rooting.

The highest rooting percentage was achieved with black / sand (1: 1) mixed soil, 92% -100%. Three variants of the total of the 6 experimental variants ensured a 78% -100% rooting. The rhizogenic substance and the composition of the substrate have differentially influenced the rooting of *Juniperus horizontalis* cuttings.

Table 4

Primary results on the rooting of the cuttings of *Juniperus horizontalis* Mnch.

Var. no.	Var. symbol Average roots length (cm)		Average number of roots (pcs.)	
V ₁	a ₁ b ₁	6.30	7.00	
V_2	a ₁ b ₂	6.30	7.50	
V ₃	a ₂ b ₁	7.70	26.50	
V ₄	a ₂ b ₂	8.60	24.60	
V ₅	a ₃ b ₁	5.50	20.50	
V ₆	a ₃ b ₂	7.20	18.20	

The first data in table 4 was statistically processed to determine the influence of the stimulator and the substrate on the rhizogenesis of *Juniperus horizontalis* Mnch. The results are presented and interpreted in tables 5 and 6.

Table 5
Influence of substrate composition on the average length of roots of untreated cuttings of *Juniperus horizontalis* Mnch.

Var.	Substrate type	Average roots length (cm))		Diferences	Semnific.		
no.	oubstrate type	cm	%	(cm)			
V_1	Prut sand	6.30	100	-	-		
V_3	Perlite granules+sand (1:1)	7.70	116.2	1.20			
V ₅	Black earth+sand (1:1)	5.50	80	-0.80	00		
	DL 5%=0.45 DL 1%=0.76 DL 0.1%=1.40						

It is found that the best results were obtained in variant V3 regarding the influence of the type of substrate on the average length of the untreated Juniperus roots on 7,70 cm Prut + peat (1: 1) sand substrate with a difference of 1.20 cm (table 5).

In rooted cuttings, we observe positive values recorded in variants V4 due to the influence of the factors studied on the root length at the rooted cuttings, perlite granules + sand (1: 1), cut cuttings, with a difference of 2.13 cm from the Prut sand .

Observing the results obtained for the 6 variants analyzed, we observe very positive values recorded on variant V4, perlite granulate + sand (1: 1) substrate, treated cuttings, with a difference of 2.13 cm from the Prut sand and distinct values significantly positive were made on variant V3, perlite granulate + sand (1: 1), to untreated cuttings, with a difference of 1.20 cm from the Prut sand.

The combined influence of the substrate and rhizogenic composition on the average length of the roots of *Juniperus horizontalis* Mnch.

Table 6

Var.	Substrate type	Average roots length (cm)		Diferences	Semnific.
no.		no	%	(cm)	
V ₁	Prut sand	6.30	100	-	
V_2	Prut sand	6.30	100	-	-
V ₄	Perlite granules+sand (1:1)	9.64	127.5	2.13	
V ₆	Black earth+ sand (1:1)	7.20	95.8	-0.50	0
	DL 5%=2.67	DL 1%=3.60	DL 0.1%	=7.80	

Table 7
Influence of substrate composition on the average number of roots on untreated cuttings of *Juniperus horizontalis* Mnch.

Var.	Substrate type	Average roots number		Diferences	Semnific.
no.		no	%	(cm)	
V ₁	Prut sand	7.00	100	-	-
V ₃	Perlite granules+ sand (1:1)	26.50	373.4	19.50	**
V_5	Black earth+ sand (1:1)	20.50	280.4	13.50	**
	DL 5%=2.67 D	L 1%=3.60	DL 0.1%	=7.80	

Regarding the influence of the type of substrate on the average number of roots on the Juniperus untreated cuttings, it was found that the best results are in variant V3, perlite granulate + sand (1: 1) substrate of 26.50, the difference being of 19.50 compared to Prut sand and variant V5, on the ground of black forest + sand (1: 1) with a number of 20.50, the difference being of 13.50 compared to Prut sand table 7), thus showing significant positive differences in the two cases.

The combined influence of the studied factors on the average number of roots in the rooted cuttings shows significant positive values recorded in variants V4 (perlite granulate + sand substrate in 1: 1 ratio, with a difference of 13.30

roots compared to Sand of Prut, V6 on a black ground + sand substrate in a ratio of 1: 1, with a difference of 10.20 roots to the Prut sand (table 8).

Table 8

Combined influence of substrate and rhizogenic composition on the average number of roots on *Juniperus horizontalis* Mnch.

Var.	Substrate type	Average roots number		Diferences	Semnific.
no.		no.	%	(cm)	
V_1	Prut sand	7.00	100	-	-
V_2	Prut sand	7.50	103.0	0.20	-
V_4	Perlite granules+sand (1:1)	24.60	270.0	13.30	**
V ₆	Black earth +sand (1:1)	18.20	239.2	10.20	**

CONCLUSIONS

According to recorded and analyzed data, at the end of the rooting period, the following were found:

- 1. A very good percentage of 90% was obtained by rooting the untreated cuttings on a black soil + sand (1: 1) substrate, with a 50% percentage difference from the Prut sand substrate;
- 2. Using the rhizogenic stimulator, 100% was obtained in combination with the black soil + sand (1: 1) substrate which influenced the rooting of the previous situation;
- 3. The perlite granule + sand substrate (1: 1) influenced a long-term increase in the root system of the Juniperus untreated cuttings; there were significant positive increases;
- 4. The combination of the studied factors influenced the average number of roots in the rooted cuttings, observing positive values recorded in the variants V4 (on a pearlite granulate + sand substrate in a ratio of 1: 1, with a difference of 13.30 roots from the sand of Prut, V6 on the ground of black forest + sand in a ratio of 1: 1, with a difference of 10.20 roots to the Prut sand.

It has been found that the substrate provides a triple and double percent of the number of cuttings roots, either treated with or without rhizogenic biostimulators.

The success of a large number of cuttings depends on the roots that will be adapted to the conditions in the nurseries.

REFERENCES

- Bernardis R., 2012- Arboricultură ornamentală.vol.3. Editura Ion Ionescu de la Brad, lasi
- Iliescu Ana Felicia, 2002 Cultura arborilor şi arbuştilor ornamentali. Editura Ceres, Bucuresti.
- 3. Mihail M., 2005 Dendrologie. Editura "Bioterra", Bucureşti.